
California State University
Northridge

Department of Computer Science

THESIWPROJECT PROPOSAL

TITLE: - Automated Software Test Tool

Eugean Hacopians

File No: 932-1022

Date: June, 96

Approved:__________––––

Committee Chair: Dr.Shan Barkataki

1 OBJECTIVE

The objective of the Graduate project described below is to
introduce the development of a software tool which will be used to
automate the testing process o f a JPL-specific set of software
programs.

2 INTRODUCTION

The Multi-mission Ground System Office (MGSO), which is part
of the Jet Propulsion Labora tory (JPL) organization, produces a
multiple set of core software programs to assist in the generation of
flight sequences that are uplinked to spacecraft through the Deep
Space Network (DSN). MGSO develops these software programs b y
collecting all the common requirements from different JPL/NASA
projects. Upon delivery of the MGSO core software, each project
modifies the program and tailors it to their specific needs a n d
requirements by manipulating the necessary files.

These programs are inter-linked together. For instance, the
output of one software program is an input to another, in addition to
passing initialization files such as the command database and flight
rules. A Sequence Integration E n g i n e e r (SIE) may generate the
initial input file by using one of these software tools.

One can look at these programs as an “operating system” of the
spacecraft, but with some differences. Consider the following: when
a UNIX command directive such as “1s” is entered at the command
line, the result is a list of the current working directory. However,
the steps involved in executing this command directive occur within
the operating system and are transparent to the user. The “1s”
command, after some translations, is converted into binary, loaded
into CPU memory, and then executed. A similar process occurs on
the spacecraft which carries the computer system (spacecraft brain)
onboard. Due to size and weight limitations, there is <a l imited
storage (hard disk) on board the spacecraft computer s ystern.
Therefore, only a portion of the operating system is instal led
onboard, while the remaining portion remains in the ground system.
In other words, the command translations and binary conversions

remain in the ground system, and then command bits are uplinked to
the spacecraft for command processing and execution.

These programs are large in size and complexity. Many files
could be manipulated during the process of adaptation and,
therefore, each software program must be tested at the unit level.
Also, other initialization files are created during the adaptation phase
either manually, by software or combination of both. These files
must also be tested for completeness and correctness.

The process of testing these files is painstaking work. Due to
the amount of data contained in each file, it is very difficult to test all
possibilities. To simplify this process, a software utility tool,
Automated Software Test Tool (ASTT), will be developed to test these
programs and files in a more efficient method.

3 TECHNICAL APPROACH

The Automated Software Test Tool (ASTT) which will b e
developed using Object-Oriented Design (OOD) and implemented in
Object-Oriented Programming (OOP), is divided into two major parts.
The first part will read a command database file containing a
description of all valid spacecraft commands and create test case
scenario files. The second part will run each test case scenario file
through the software chain to verify the validity and correctness of
every program and initialization file. If at any time, a program i n
the chain fails to produce a correct output file or fails altogether, the
program will be terminated and the chain will be concluded, A
report will be generated to indicate the success or failure of each test
case.

The ASTT will produce approximately 1600 test cases, one per
command. E a c h f i l e w i l l c o n t a i n o n e c o m m a n d w i t h all the
permutation of parameter values. For instance, if a command has
three parameters with the first parameter having four. poss ib le
values, the second parameter having three possible values, and the
third parameter having two possible values, then the test file would
contain 4X3X2 = 24 instances of that one command. Command
parameters range from zero to thir ty, with an average of four

parameters per command. Each parameter has about two tO twent Y
values, with an average of five values per parameter. To process a
test of this magnitude, it would take approximately seven days of
non-stop processing on a 100 Million of Instruction Per Second
(MIPS) Hewlett Packard 735 workstation. To shor ten the tes t
duration, ASTT will have the capability to direct test execution tasks
to multiple workstations based on users request. ASTT will have the
ability to access 3 Hewlett Packard 735 workstations and 15 Hewlett
Packard 725 workstations (that run at 50 MIPS). The user will
interact with the ASTT via a Graphical User Interface (GUI).

This project will be accomplished in three incremental phases.
The software for generating the test case scenario files will b e
developed in the f irst phase, along with the command database
interface, and processing of each command. The second phase will
include developing the supporting scripts which will be used to run
the test f i les through the software chain for verification a n d
validation. Also the preliminary part of the GUI will be developed in
the second phase. Enhancing the capabilities of ASTT will be done i n
the third phase, such as distr ibuting the processes over multiple
workstations, enhancing the supporting scripts and GUI to support
the process distribution. Each delivery phase will include a specified
period of time allocated for testing the delivered products and their
capabilities.

Work breakdown structure is as follows:

. Phase One
1. Develop command database interface.
2. Process commands.
3. Create “test case scenario” files (which is the initial input

file).
4. Verify and validate phase one capabilities.

. Phase Two
1. Develop scripts in order to run the test files through the

software chain and detect any failure.
2. Develop the preliminary part of the GUI.
3. Verify and validate phase two capabilities.

. Phase Three
1. Distribute the processes
2. Enhance the supporting

process distribution.

over multiple workstations.
scripts and GUI to support the

3. Verify and validate phase three capabilities.

4 SCHEDULE

The elapsed time for this project will be June 1996 through
February 1997. The chart below depicts the milestones.

Phase One Phase Two Phase Three
d v m v- #

I I I I I I 1 I

Jun Jul Aug Sep Ott Nov Dec Jan Feb Mar
1996 1997

Note: The phase and steps are defined in Section 3 of this document.

5 CRITERIA FOR SUCCESS

The minimum success criteria for validating and evaluating the ASTT
are as follows:

1.

2.

3.

4.

Generation of test case scenario files using the command
database interface.
Development of a major script file used to run a test case
through the chain of software programs on one workstation.
Distinguishing between successful or
test cases.
Availability of a user-friendly GUI that
the success criteria 1, 2, and 3.

The desired success criteria for validating and
are as follows:

5. Distribution of processes onto multiple

unsuccessful “failed”

utilizes and monitors

evaluating the ASTT

workstations.

6. Successfu
support
capabilit

6 Reference

1 production and implementation of the ASTT to
users with effective and automated testing

es.

[1] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.
“Object-Oriented Modeling and Design.” Prentice-Hall, New Jersey,
1991

[2] D. Norman. “The Design of Everyday Things.” Doubleday, New
York, 1989.

[3] B. Shneiderman. “Designing the User Interface.” Addison-
Wesley, New York, 1992. Second Eddition.

[4] R. Pressman. “Software Engineering: A Practitioner’s Approach.”
McGraw-Hill, New York, 1992. Third Edition.

7 Acknowled~ment

Portions of the work described were performed at the Jet Propulsion
Laboratory, California Institute of Technology under contract with
National Aeronautics and Space Administration.

8

CALIFORNIA STATE UNIVERSITY,
NORTHRIDGE

Automated Software Test Tool

A graduate project submitted in partial fulfillment of the
requirements for the degree of Masters of Science

Computer Science

b y

Eugean Hacopians

May 1997

The Graduate project of Eugean Hacopians is approved:

Suzanne R. Dodd Date

Professor Steven Stepanek Date

Professor Shari Barkataki, Chair Date

California State University, Northridge

i

I dedicate this thesis to my loving wife Roubina.

,.

TABLE OF CONTENTS

ABSTRACT . *.**.*..*VI

1. INTRODUCTION ..0000 ●00..0 ● 000.0 ●00 1

2. WHAT IS SOFTWARE TESTING9● **..****.*** ● ***.******.* ● ***.*** 6

2.1. UNIT TESTING . 7

2.1.1. WHITE BOX TESTING. 7
2.1.2. BLACK BOX TESTING . 8

2.2. INTEGRATION TESTING . 8

2.3. SYSTEM TESTING . 9

2.4. ACCEPTANCE TESTING . 10

3. ASTT - THE PRODUCT . 0.0.0...0.0 . 0..00..00.0 ● 0.000.00000 .0 ..0.00 1 1

3.1. DATABASE READER . 1 3

3.2. ASTT INTERFACE . 1 5

3.3. PROCESS DISTRIBUTOR . 2 2
3.4. TEST DATA GENERATOR . 2 3

3.5. RUN SCRIPTS . 2 4

3.6. ERROR ANALYSIS . 2 5

4. DEVELOPMENT OF ASTT . * * . * **.***.*.*...*..**** 2 7

4.1. PROBLEM DISCOVERY . 2 8

4.2. PROBLEM ANALYSIS . 2 9

4.3. DEVELOPMENT PROCESS . 3 0
4.3.1. PHASE ONE: HIGH LEVEL REQUIREMENTS 31
4.3.2. PHASE ONE: DEVELOPMENT. 3 2
4.3.3. PHASE ONE: EVALUATION. 3 4
4.3.4. PHASE TWO: HIGH LEVEL REQUIREMENTS38
4.3.5. PHASE TWO: DEVELOPMENT. 3 9
4.3.6. PHASE TWO: EVALUATION. 4 4
4.3.7. PHASE THREE: HIGH LEVEL REQUIREMENTS47
4.3.8. PHASE THREE: DEVELOPMENT. 4 7
4.3.9. PHASE THREE: EVALUATION. 4 8

. . .
111

5. CONCLUSION ● ..**.*..**.. ● *****....***. . * . . * *..*.*.*. ● *.**. .* *e.*** ● * 4 9

6. REFERENCES .**.**.****. .******.**.* ● *.***.*.*** .**..***.*** .****.**** 5 3

6.1.
6.2.
6.3.
6.4.

SOFTWARE ENGINEERING REFERENCES . 5 3

CASSINI DOCUMENT . 5 3
USER INTERFACE REFERENCES . 5 3

PROGRAMMING REFERENCES . 5 4

7. ACKNOWLEDGMENTS ● .***.**.*** ● .**,******* ● .****.***.* ● *****O* 5 6

GLOSSARY ● *.***..*... ..*..**..*.. . ..*...**..*. .*.*.****..* ● 9.*.******. ● *** 5 8

ACRONYM LIST . ● 9..**.***** .**.****.*** ● *.**..*** 6 1

iv

TABLE OF FIGURES

FIGURE 1: THE MSS SOIWWARE CHAIN (I D E A) .2

FIGURE 2: AS’IT PROGRAM COMPONENTS AND PROCESS FLOW14

FIGURE 3: ASTT GRAPHICAL USER INTERFACE . 16
FIGURE 4: ASTT PROGRAM SAMPLE RUN . 2 1

FIGURE 5: PHASE ONE ASTT DATA FLOW DIAGRAM . 33
FIGURE 6: ASTT TEST DIRECTORY STRUCTURE . 3 4
F1GURE7: PHASE wOASm DATA DImCTORYSmUCTUW ...40

FIGURE 8: PHASE TWO ASTT DATA FLOW DIAGRAM(DATABASE READER’S

OPERATION) .41

FIGURE 9: PHASE TWO ASTT DATA FLOW DIAGRAM(AS’IT’S OPERATION)41

FIGURE 10: PHASE TWO ASTT DATA FLOW DIAGRAM (~OCESS

D I S T R I B U T O R’S O P E R A T I O N) . 4 2

v

ABSTRACT

Automated Software Test Tool

BY

Eugean Hacopians

Masters of Science in Computer Science

Software testing is an important phases in any software

development project [4]. The testing typically consumes twenty to

twenty five percent of the total effort of software development.

Unfortunately, in a typical project the actual time for testing is

decreased due to schedule overruns in earlier phases of software

development [5]. To generate, execute, and analyze the result from

test cases

tools for

any or al

is very crucial but time consuming task. Using automated

testing can help meet the testing requirements. Automating

parts of the test process will help developers to meet the

delivery schedules [4].

This Graduate project describes the analysis , design, and

implementation of a software testing tool for use in testing a JPL-

Vi

specific system. This system conta

programs developed by the Mission

ns several large inter-l inked]

Sequence System (MSS) group

for the Uplink Operations Element (ULO) of the CASSINI project. The

M S S i s u s e d f o r c o m m a n d i n g t h e CASSINI spacecraf t tha t i s

scheduled to be launched towards Saturn in October of 1997. This

project will continue until 2008 with possibility of extended mission,

if funding is approved,

From July 1996 through May 1997, the Automated Software

Test Tool (ASTT) has been fully operational and is being used to

automate up to sixty percent of the testing process of all programs i n

the MSS. The use of ASTT reduced the cost of testing from estimated

twelve engineering work weeks (best case if performed manually) to

one engineering work week (worse case if performed by ASTT) and

increased the overall efficiency of the testing process. The integrity

of the MSS was significantly improved by ASTT through the

automation of test case generation, test case execution in parallel

utilizing multiple workstations, and analysis of the result from the

linter-linked: Input file of one program is generated by another program. In

other words, in order to prepare the input files and execute program

number two, program number one must be executed first.

vii

test cases. The MSS is planning to use ASTT for testing future

programs delivered for the duration of the CASSINI project.

The soundness of the MSS software is increased by removing

the tedious tasks from the test team and allowing the team to

concentrate on in-depth testing and analysis of MSS software. The

ideology behind ASTT can be a tremendous cost savings and can

increase software quality, a goal for any software project.

Portions of the work described here were performed at the Jet

Propuls ion Labora tory , Ca l i forn ia Ins t i tu te of Technology u n d e r

contract with National Aeronautics and Space Administration.

. . .
Vlll

.

,

1 . INTRODUCTION

The Multi-mission Ground System Office (MGSO) is a part of the

Jet Propulsion Laboratory (JPL) organization. MGSO produces a set of

core software programs to assist in the generation of flight sequences

that are uplinked to spacecraft through the Deep Space Network

(DSN). MGSO develops these core software programs by collecting all

of the common requirements from different JPL/NASA projects.

Upon delivery of the MGSO core software programs, each project

modifies and tailors each program to their specific needs and

requirements by manipulating the necessary files.

These programs are inter-linked together, (see Figure 1). For

instance, the output of one software program is an input to another.

In addition to expecting the output file of the previous program (in

case of program-2, program-3, and program-4), initialization files

such as the Command Database (CMI_DB)2 and Flight Rules3 are also

expected by each program. A sequence team member may generate

the initial input file by using the program-1 of the software chain.

2 The file that contains all the spacecraft commands with all the possible
argument values of every command,

3 Set of rules to follow in order to NOT harm the spacecraft, These rules are
expressed as algorithms read by software to check if the set of
commands will generate a conflicting result for the state of the
spacecraft

1

.

resource files b

Program-1 file-p l-l
P Program-2 resource tiles

;equence fde
b

output files

Y /0
output files

file-p l-2 file-p2-l
working directory

J~,

output files utput files

xource files

‘o

Program-3 Program-4 resource files

FIGURE 1: THE MSS SOFTWARE CHAIN (IDEA)

One can look at these programs as an “operating system” of the

spacecraft, but with some differences. Consider the following: when

a UNIX command directive such as “1s” is entered at the command

line, the result is a list of the current working directory. However,

the steps involved in executing this command directive occur within

the operating system and are transparent to the user. The “1s”

command, after some translations, is converted into binary, loaded

into CPU memory, and then executed. A similar process occurs on

the spacecraft which carries the computer system (spacecraft brain)

2

onboard. Due to the difficult and lengthy process of certifying

computer h a r d w a r e4, there is a limited storage (hard disk) and

process ing power on board the spacecraf t computer system.

Therefore, only limited capabilities of the operating system are

installed onboard, while the remaining portion remains in the ground

system. The command translations and binary conversions remain in

the ground system, and then command bits are uplinked to the

spacecraft for command processing and execution.

The first MSS program includes a special editor to generate the

initial file called a sequence file. A sequence file is similar to perl or

Bourne shell script files that contain several related commands in

sequential order to perform a task, This editor allows the user to

combine several related spacecraft commands in a sequence file b y

selecting the command and its argument values from a Graphical

User Interface (GUI). The sequence file is processed through the MSS

similar to a Bourne shell script processed through a UNIX system.

4 Every peace of the spacecraft from the building material to the electronic

components must pass a regression testing process against radiation,

heat and other environmental elements absent on earth due to the

atmosphere.

3

For example, to install a program in the user’s home directory the

following commands are executed in sequence:

Cp /dir l/dir2/prog.tar.Z -user_ account/.

uncompress prog. tar.Z

t a r xvf prog.tar

rm prog. tar

If we place the code segment in a file, the Bourne shell script file will

look like the following:

#! /bin/sh

Cp /dir l/dir2/prog.tar.Z -user_account/.

uncompress prog.tar.Z

t a r xvf prog.tar

r m prog.tar

Similarly, if a spacecraft needs to be rotated in order to send its data

to earth, several commands need to be executed one after the other

to perform this task.

These programs are large in both size and complexity. Many

files can be manipulated during the process of adaptations a n d

5 Tailoring the MGSO software to a project’s requirements and specification.

4

therefore, each software program must be tested at the unit level.

Also, other initialization files are created during the adaptation phase

either manually, by software, or combination of both. These files

must also be tested for completeness and correctness.

The process of t es t ing these in i t i a l iza t ion files are labor

intensive work. Due to the amount of data contained in each file, it is

very difficult to test all possibilities. To simplify this process, a

software utility tool, Automated Software Test Tool (ASTT), has been

developed to test these programs and initialization fi les more

efficiently.

2 . WHAT IS SOFTWARE TESTING?

“Software testing is the process of executing a program or

system with the intent of finding errors” [2]. The errors found

during software testing could be caused by flaws in:

● Design.

● Coding.

● Requirement.

Other factors considered in software testing relate to how well

the software has been bui l t o r engineered , This includes

consideration of documentation, structure, efficiency, ease of

understanding, and extendibility [4]. However, testing can not show

the absence of software defects, it only can show software defects

are present. [3]

There are four d i s t inc t l eve ls of testing: Unit Testing,

Integration Testing, System Testing, and Acceptance Testing.

Individual program modules are Unit Tested. After integrating

groups of program modules Integration Testing is performed, and

groups of programs are tested together in Sys tem Tes t ing .

6

,

.

Completed system is then tested by end users during Acceptance

Testing.

2.1. UNIT TESTING

Unit Testing is performed by the programmers. This scheme is

an informal testing process used to find logic, structure, typographic

and module interface errors. There are two major schemes used to

perform Unit Testing, White Box Testing and Black box Testing.

2 . 1 . 1 . WHITE BOX TESTING

White Box Testing is used to test the internal control structure

of a given module by the programmer. The programmer designs and

generates test cases to execute each independent path at least once,

execute every loop condition at the boundaries and wi th in the

operational boundaries, and execute all the logic decisions on their

TRUE and FALSE sides. The White Box Testing uncovers errors such

as incorrect assumptions, logic errors, or typographical errors [41.

.

2 . 1 . 2 . BLACK BOX TESTING

Black Box Testing is used to test the functional requirements of

the software

p r o g r a m . I n

without regards to the internal workings o f t h e

this testing method the programmer designs and

generates test cases using input conditions that will fully exercise all

functional requirements. This testing scheme uncovers such errors

as incorrect or missing functions, interface errors, data structure

errors, performance errors, ini t ial ization errors, and termination

errors [4].

Black Box Testing is not an alternate to White Box Testing. It is

a complimentary approach that is likely to uncover different classes

of errors than White Box Testing [4].

Techniques such as Equivalence Partitioning, Boundary Value

Analysis, Comparison Testing or Cause-Effect Graphing Techniques

are used to design and generate test cases used in Black Box Testing

[2].

2.2. INTEGRATION TESTING

Integration Testing begins when several related modules are

brought together. This testing scheme is used to test the interfaces

8

of these modules and ensure that the programs are communicating

as expected.

2.3. SYSTEM TESTING

System Testing begins after Integration Testing. This testing

scheme is used to exercise all system level functions. Also the

software is stressed to uncover its limitations and measure its full

capabilities. System Testing relies mostly on the Black Box Testing

perspective [4].

System Testing is much more formalized than unit testing. At

this level of testing, records are kept to document what is tested and

the result of each test is maintained. Automated aids are more

useful and more commonly developed and used to reduce the time

and cost of System Testing. Test Data Generators that generate test

data files based on parameters and report on the differences, are

used increasingly [4].

9

.

.

2.4. ACCEPTANCE TESTING

Acceptance Testing begins when System Testing is completed.

Its purpose is to provide the end user or customer with confidence

and assurance that the software is ready to be used.

10

3 . ASTT - THE PRODUCT

The spacecraft command definition (i.e. number of arguments

for each command, argument values, type of commands) is specified

in a centralized database called the Command Database (CMD_DB). I n

order to define, verify, and translate a command, access to the

information of the CMD_DB file is needed.

Each of the MSS programs perform one step of the spacecraft

command translation process, and therefore, each program needs a

subset of the information contained in the Ch4D_DB file, These

programs utilize the necessary information in a file of which the

format is only readable by that one program.

The CASSINI project will have approximately one thousand six

hundred spacecraft commands by the end of July 1997. Command

arguments range from zero to thir ty, with an average of four

arguments per command. Each argument has a range of

approximately two to two hundred values, with an average of five

values per argument. Generating test cases to verify every bit of

information in each program’s CMI_DB file against the centralized

database requires a great deal of effort. For example, if command

XYZ has th ree a rguments wi th the f i r s t a rgument having four

11

possible values, the second argument having three possible values,

and the third argument having two possible values, 4X3X2 = 24

instances of tha t one command must be tes ted . Therefore,

automating the test case generation and execution of each test case

through the MSS became necessary.

The Automated Software Test Tool (ASTT) is currently being

used to automate the C~_DB file verification of each MSS program

against the centralized database. The purpose of this tool is to

reduce the amount of time spent on CMD_DB file verification. The

ASTT reduces the time duration in three different ways:

●

●

●

This

Generating the test files.

Executing test files in parallel on multiple workstations.

Analyzing the result of the test cases.

tool also performs some other high level System Testing

such as program interface testing, reading in the necessary resource

files, and producing the correct output files.

The ASTT is

UNIX Bourne shell

a system compromised of several programs a n d

scripts. Individual program and script range from

12

fifty lines to three thousand lines of code. The ASTT components,

shown in Figure 2, consists of the following:

● Database Reader - generates partial test cases a n d

command table file.

● ASTT Interface - the user interfaces with in order to

create test runs.

● Process Distributor - distributes test cases to multiple

workstations and calls the Run Script.

● Test Data Generator - takes the part ial test cases

(specified in the ASTT Interface by the user) and

generates complete test cases.

● Run Scripts - executes MSS programs (specified in the

ASTT Interface by the user) with each test case.

● Error Analysis - analyzes the results of the test cases.

3.1. DATABASE READER

The Database Reader i s a ba tch mode C p r o g r a m w i t h

approximately two hundred lines of code.

13

.

Read Generate

‘File ,~fiDataDirKtoV

Command
atabase

Cases

Read Command
Table File

ASTT
Interface Test Data

call to
generate

call to test cases
distribute
a test run

Process
Distributor each test case

call to
analyze
errors

FIGURE 2: ASIT PROGRAM COMPONENTS AND PROCESS FLOW

The System Test Engineer executes Database Reader program

once per CMD_DB file delivery. T h e ~_DB file is delivered

whenever a set of commands are added, deleted, or modified in a n y

way. The Database Reader reads the CMD_DB file and generates:

14

● One partial sequence file per command.

● Command table file.

Each partial sequence file contains several instances of a given

command with the combination of its parameter values (i.e. 24

instances for command w as mentioned in the previous example).

A sequence filet not only contains the spacecraft commands but also

has different packaging schemes. The packaging schemes will b e

discussed in the ASTT Interface program description. A command

table file contains all the command stem S7 specified in the CMD_DB

file grouped by subsystem. A subsystem is one of the spacecraft

components such as the infrared camera. All commands belonging to

each subsystem are distinguished and grouped under that subsystem

heading,

3.2. A S T T

The ASTT

INTERFACE

I n t e r f a c e , s h o w n i n f i g u r e 3 , i s t h e Graphical User

Interface (GUI) to the ASTT with approximately three thousand lines

6 Similar to bourne shell script file that contains several
sequential order to perform a task.

7 Spacecraft command names i.e. “1s” is a command stem.

15

related commands in

FIGURE 3: ASTT GRAPHICAL USER INTERFACE

16

.

of code, This program is an X-motif based GUI with object-oriented

C++ classes for data structures. The structure of these classes are

discussed in section 4.

The ASTT Interface program reads three input files to populate

the corresponding data structures and display the data via the GUI

when the LOAD button is pressed. The first input file read is the

command table file generated by the Database Reader. The

information in this file is stored in the subsystem/command d a t a

structure and the subsystems are displayed in the SUBSYSTEM list.

By double clicking on a given subsystem, the commands belonging to

that subsystem are displayed in the COMMAND list. The next file

read is the default packaging schemes of each command. The

information read from this file is also s t o r e d i n t h e

subsystem/command data structure in its corresponding command

class.

A sequence file can be packaged in four different ways:

● Direct.

● Sequenced.

● Immediate/Delayed Action Program (IDAP).

17

.

● Privileged Action Program (PAP).

Direct packaging means that as soon as the sequence file is

received by the spacecraft it will be executed. Sequenced packaging

means that the sequence file is stored in the spacecraft memory. One

can think of sequenced packaging as time triggered events which the

trigger time specified

Sequenced packaging

PAP packaging is like

in the sequence file. IDAP packaging is like

that is limited in data size (118 data words).

IDAP packaging with

Only limited number of commands that are

placed in a PAP packaging.

an additional restriction.

marked privileged can b e

After the default packaging scheme file is loaded, the user can

see the default packaging scheme of each command by double

clicking on that command. This is indicated by the colors of the four

toggle buttons that change whenever the user double clicks on a

command,

Sequenced,

buttons wil

unchanged

For example, if a command can be placed in Direct,

and IDAP packaging, the “dir”, “seq”, and “idap” toggle

change color leaving the color of the “pap” toggle button

18

The final input file is the name of the workstations available to

the user. The information in this file is stored in the host class data

structure and displayed in the HOST list.

The user can se lec t commands wi th d i f fe ren t packaging

schemes to build a test run. When a subsystem is selected, all the

commands in that subsystem are selected for that test run. For

example, the user can select several commands by double clicking o n

a desired subsystem, highlighting the command names, and pressing

the select button under the COMMAND list. In addition, the user can

select other commands in other subsystems by fo l lowing the

previously mentioned steps, or selecting an entire subsystem(s) b y

highlighting subsystem name(s) and pressing the select button under

the SUBSYSTEM list. If neither of the packaging scheme toggle

b u t t o n s a r e s e l e c t e d , t h e defau

selected.

packaging scheme(s) is(are)

The user must select at least one of the MSS programs b y

pressing the appropriate toggle buttons. Also, the user can select the

workstations that will be used to execute this test run. In order to

select the workstations the user highlights the host name(s) and

presses the select button under the HOST list. If no host is selected

19

.

the current workstation will be selected

the choice of deselect any selected

as the default. The user has

options by highlighting the

selection and pressing the corresponding unselect button.

After the user makes all the selections needed the user must

select the “SAVE_ENV”

This action will save all

button below

the selections

the “ASTT env file:” text field.

made by the user in a file. The

name and location that this file will be saved is specified in the

“ASTT env file:” text field. After the environment file has been saved

the user can press the “RUN” button,

execute the saved test run. This action

call. The parent process allows the

at the top of the display, to

will execute a forko function

user to return to the ASTT

Interface in order to design the next test run. The child process calls

the Process Distr ibutor program to perform the test run. The

functions of Process Distributor program are discussed in section 3.3.

Process

runs the

Distributor.

For example (see Figure 4), if the user generates two test

ASTT will generate two child processes for each test run and

calls the Process Distributor program from each child process.

Assume test run number one contains sixty test cases wi th

workstations number two through five as it’s computing resources.

20

.

And also assume test run number two contains fifty test cases with

workstations number four through eight as it’s computing resources.

—— — child process I

ws#l 1

QASTT

4
process

QQ.

process
distributor distributor
for test run for test run

#1
/

#2
t

II
/1
II

\

EWS#8

run script

61WM5

run script

FIGURE 4: ASTT PROGRAM SAMPLE RUN

21

Each of the process distributors will utilize the computing resources

allocated to them by the user to complete the test run allocated to

this program.

Any action taken during the test design process is documented

in the text output at the bottom of the ASTT Interface. If any error

occurs during the test design process, the error is printed in the text

output and the error dialog boxes are displayed, informing the user

of each error.

3.3. PROCESS DISTRIBUTOR

The Process Distributor is a C++ program with approximately

eleven hundred lines of code. This program is called by the child

processes of the ASTT Interface in order to execute a test run. The

Process Distributor reads the ASTT environment file and executes the

test cases specified in this file. The function of this program is to:

● Generate the complete test cases by calling Test Data

Generator.

● Copy a test case directory to the temporary directory of

the selected workstations.

22

● Distribute the execution of each test case to the

corresponding workstations.

● Move the test result back to the test directory.

● Analyze the generated data by calling Error Analysis

program.

The process distribution is done by forko function and remote

shell calls. The parent process calls multiple forko functions unti 1

every workstation has been allocated a test case. The child process

copies the test case to the designated workstation, executes the Run

Script, and copies the result back to the test directory. The child

process performs these tasks via remote shell calls. After completion

of every test case specified in ASTT environment file, the program

calls the Error Analysis script.

3.4. TEST DATA GENERATOR

The Tes t Data Genera tor i s a Bourne shell script wi th

approximately sixty lines of code. This script reads the ASTT

environment file that contains all the information to perform a test

23

.

run, then generates the complete test files specified in the ASTT

environment file. This includes:

● Creating one directory per test file.

● Placing the packaging scheme in each sequence file.

● Copying the necessary MSS program environment files in

each test directory.

3.5. RUN SCRIPTS

The Run Script is a Bourne shell script with approximately

seventy lines of code. This script takes five arguments as input. The

first argument is the path to the test directory. The next four specify

which programs are needed to be executed. A “l” in any of the four

arguments indicates to run that program and a “O” for no execution.

For example, if the program-1 and program-2 are executed the

arguments to the Run Scripts would be:

runScript testpath 1 1 0 0

24

The Run Script executes a test case through the specified program(s)

as specified on the script’s argument line.

As discussed earlier, the MSS programs are interconnected.

Therefore, if any error is detected after the execution of a program in

the beginning or middle of the chain, executing the next program is

not necessary. The criteria for running the first program in the chain

is the existence of the input files. The criteria for running the next

programs are to scan the log file of the previous program for errors.

If an error is detected, the execution of that test case is terminated

for that specific command. Otherwise, the next program is executed.

These steps are taken until every MSS program has been executed.

3.6. ERROR ANALYSIS

Error Analysis is a Bourne shell script with approximately two

hundred and fifty lines of code. After all the test cases in a ASTT

environment file have been executed, the Process Distributor calls

the Error Analysis script to analyze the data generated. This script

scans the log file of each MSS program, starting from the begging of

the chain, for expected and unexpected errors. This is determined

25

.

.

according to the error messages detected. These steps are performed

for every test case specified in the ASTT environment file.

Test case directories are moved to a separate directory. As

mentioned there are two kinds of errors, expected or good and

unexpected or bad error cases. Therefore, there are two separate

directories to keep the good and the bad error cases. The content of

“good errors” directory is the expected error cases (i.e. purposely

inserting an incorrect packaging scheme in the sequence file). The

content of “bad errors” directory is any unexpected results. The

structure of the “good errors” and “bad errors” directories are the

same structure as the test directories. All successful test cases

remain in the test directory.

After the ASTT run has completed, the user views the test

cases in the “bad error” directory to determine the cause of the

failure. If the “bad error” directory is empty and the software ran to

completion, the user can assume the ASTT run was successful. The

test cases in the “good error” directory are also considered successful

test cases.

26

4 . DEVELOPMENT OF ASTT

The ASTT evolution, like any other major software product,

began with encountering problems. These problems encountered b y

the System Test Team were the time allocated to perform all S y stem

Testing and the concern of not being able to test every MSS

program’s database files. The next steps in developing the ASTT were

problem analysis, generating requirements, design, implementation,

testing and maintenance.

Due to the nature of the ASTT and possibility of additional

requirements, the Evolutionary Software Development Process was

chosen. This process allows the developer to separate the soft w are

requirements into related groups. Then one of the groups are

selected, developed and delivered to the customer for evaluation.

After the customer tries the first build of the software the next

group of requirements are selected and development of the next

software build starts. The user provides feed back to the developer

in regards to the likes and dislikes of the delivered software build.

The user suggestions are inserted into appropriate requi rement

groups and development towards n e x t b u i l d o f t h e s o f t w a r e

continues [2].

27

.

‘

4.1. PROBLEM DISCOVERY

The MSS test team received the first MSS delivery for System

Testing in July 1995. The MSS Test Team is comprised of William J.

Krueger and Eugean Hacopians. The first version of MSS programs

could only accept one hundred s ix ty f ive of the p lanned one

thousand six hundred commands. During System Testing, various

test methods such as Integration Testing, Requirement Testing, and

Program Interface Testing were utilized to verify the MSS programs.

The test team realized that generating test cases to verify the

database files of each program would be a d i f f icu l t and t ime

consuming task. Therefore, an idea to automate the generation of

test cases came about.

From September 1995 to March 1996, efforts were put forth

by the test team to investigate the possibility of automating the test

case generation process for verifying each program’s database file

that contains information about the spacecraft commands such as

command stems and their possible argument values. During this

time, the following issues were studied: spacecraft commanding

possibilities, processing of source data (such as command names and

argument values), generation of sequence files, and test case storage

28

directory structure. The s tudy resu l ted in de te rmin ing t h e

spacecraft commanding possibilities. As mentioned in Section 3,

command XYZ with four values for argument one, three values for

argument two, and two values for argument three has possible 24

instances. The commanding possibilities for command XYZ is 24

which is the combination of the argument values. The issues of

processing source data, generating sequence f i les, and test case

storage structure were postponed for further study.

4.2. PROBLEM ANALYSIS

The test team received the second version of MSS programs for

System Testing in March 1996. This system now could process about

four hundred of the planned one thousand six hundred commands.

During System Testing, the test team tried incorporate the idea of

commanding possibilities into generating partial test cases. These

test cases would resemble the test cases that the automated testing

tool was expected to generate. The test team produced good results

from these test cases. Good results in testing means that the tes

cases detected one or more anomalies. Using these simulated tes

cases, numerous anomalies in the MSS programs were found and

29

.

..

documented. Since the idea and the method of test case generation

was successful, the MSS team placed a proposal for funding to

develop the ASTT tool. After funding approval , the test team

decided to start developing this tool by collecting requirements.

Eugean Hacopians was assigned the development tasks of the ASTT.

4.3. DEVELOPMENT PROCESS

Due to the discreet nature of the MSS programs, detai led

methods and file formats will not be provided in this report. Since

the ASTT utilizes these programs and files, detail design, code, or file

formats of ASTT will not be revealed in this report. The information

c o n t a i n e d i n these programs are considered sensitive

data/information.

According to CASSINI Ground System Security Requirement

document: “Non-classified data or information which if compromised

could impact the laboratory’s image, pose a threat to personal

privacy or pose a threat to human life’’[5].

30

.

4 . 3 . 1 . PHASE ONE: HIGH LEVEL REQUIREMENTS

The high level requirements

● Reading the command

for the ASTT consisted of:

information from the CMD_DB file.

● Generating one sequence f i le per command wi th the

combination of the corresponding command argument

values.

The following addit ional requirements were added during

ASTT’s development:

● Packaging each sequence f i le in a l l four packaging

schemes of Direct, Sequenced,

● Automating the execution of

programs.

IDAP and PAP8.

all test cases through MSS

The capability for automating the execution of test cases were

added to the list of requirements to accommodate the execution of

grater number of possible test cases in the future. For example, with

s See section 3.2, ASTT Interface for more explanation.

31

one thousand six hundred commands in each of four possible

packaging schemes, there would be a t l eas t s ix thousand four

hundred test cases. Therefore, to verify the database files of every

MSS program,

MSS programs

process would

automating th

the test team would be required to execute all four

approximately six thousand four hundred times. This

take as long as generating test files. Hence, b y

s process the test team was able to generate and

execute test cases automatically to verify database files of all MSS

software.

4 . 3 . 2 . PHASE ONE: DEVELOPMENT

From June 1996 to November 1996, the Planning, Design, and

Implementation phases of the ASTT’S first build was completed. The

programs developed during this period, shown in Figure 5, consisted

of the Database Reader, Test Data Generator, Run Scripts, and a

partial Error Analysis. All programs were executed in batch mode.

The Database Reader read the CMD_DB file and generated a command

table file9. The Test Data Generator read the command table file and

9 The command table file is a subset of CMD_DB file that contains information
about the command stems and the corresponding arguments.

32

.

~

Command , Test Data
Table file Generator

Complete
test cases

Test Case Directory Take result of every
Structure test case in the

Take every test case
in the directory

structure

Run Call to run
Scripts ●

MSS Programs

FIGURE 5: PHASE ONE ASTT DATA FLOW DIAGRAM

generated four complete sequence files for each command specified

in the command table file. This was accomplished by generating one

partial test case per command and placing each partial test case in all

four packaging schemes. All of the information was stored in a p re -

defined directory structure (see Figure 6). The directory structure

was designed to separate each test case by subsystem, command a n d

packaging scheme.

33

.

s

-Itestcasesl
command/

-

FIGURE 6: ASTT TEST DIRECTORY STRUCTURE

The Run Script iterated through the test directory structure

and executed all the test cases in the test directory structure through

all four MSS programs. After the execution of all the test cases were

completed the Error Analysis script was executed. The Error

Analysis script iterated through the test directory structure searched

for errors in the log files generated by the MSS programs. Upon

detecting an error, the Error Analysis script moved those test cases

to an “error” directory and generated a log file for documentation

prepuces.

4 . 3 . 3 . PHASE ONE: EVALUATION

The test team received the third version of the MSS programs

for System Testing in November 1996. This system now could

process approximately one thousand of the planned one thousand six

hundred commands. During this period the test team used the

34

ASTT’S first release to test the MSS programs. Evaluation phase of

the ASTT’s first build was completed during System Testing.

The ASTT genera ted approximate ly th ree thousand e igh t

hundred test cases out of four thousand possible, and ran the test

cases through every MSS program. It was discovered that generating

test cases for about fifty out of one thousand commands were not

possible, due to complicated logic of those commands. The Test Data

Generator also ,was not able to generate those test cases that one

command argument depended on the other argument of the same

command. However, the rest of the test cases found additional

anomalies. These anomalies were due to the discrepancy between

the CMD_DB file and one of MSS program’s database file. These

discrepancies were from:

● Addition of new command(s) to the system.

● Deletion of existing command(s) from the system.

● Change(s) in the command structure (i .e . change in

number of arguments).

● Change(s) in the argument values of a command.

35

The benefits from using ASTT were:

● Generating all test cases.

● Executing all test cases in a much shor te r t ime than

manual process.

● Verifying the correction of the prev ious ly found

anomalies.

● Finding additional anomalies.

Every partial sequence file and its corresponding four test

cases (one complete test case per packaging scheme) were stored

within the same test directory structure. The Run Scripts executed

all the test cases through the MSS programs. Since the workstation

that was executing the Run Scripts only had two and one half

gigabytes disk space available the system ran out of disk space. The

following reasons contributed to the shortage of storage:

● The quantity of test cases generated by ASTT.

● The amount of data generated by every MSS program.

36

Due to this problem additional data storage was allocated to the

test team from other workstations. Accessing these data storage

were done via Network File Systems (NFS) mounts.

The amount of data generated was approximately nine

gigabytes. To work around the data storage problem the Run scripts

were modified to run test cases of one subsystem at a time instead of

all the test cases. Another modification to the Run Script was to

remove the unnecessary output files from each test case directory.

After these modifications the amount of data generated was

approximately seven gigabytes.

Running three thousand eight hundred test cases took

approximately six days of non-stop processing on a Hewlett Packard

735 workstation with a rating of one hundred Millions of Instruction

Per Second (MIPS).

Another problem was the manual processing portion of error

analysis. As mentioned above, the Error Analysis script detected all

the errors and did not distinguish the “good errors” from the “bad

errors’’l O. Therefore, the user had to examine every test case within

10 See section 3.6, Error Analysis, for more detailed explanation of GOOD and
BAD errors.

37

*

““

the “error” directory instead of examining only the test cases in the

“bad errors” directory.

Another encountered disadvantage of ASTT was the ability of

executing only one command with a specific packaging at a time. For

instance, if a user needed to test command X with only “dir”

packaging scheme, the user had to execute the command with all

four packaging schemes.

4 . 3 . 4 . PHASE TWO: HIGH LEVEL REQUIREMENTS

The high level requirements for the next development phase

were:

● Distributing the execution of test cases over multiple

workstations to reduce the test execution time.

● Modifying the test case generation process to separate

the partial sequence files and the test cases.

● Modify the Error Analysis script to distinguish the “good

errors” and the “bad errors” and separating them into

different directories.

38

● Generating a table containing the default packaging

schemes of every command in the system.

● Introducing a Graphical User Interface (GUI) for ease of

selecting commands, packaging schemes, and workstation

names for process distribution.

● Allowing the user to select any or all packaging schemes

including the default packaging schemes.

4 . 3 . 5 . PHASE TWO: DEVELOPMENT

From December 1996 to March 1997, the Planning, Design, and

Implementation phases of the ASTT’S second build was completed.

The programs developed during this period, shown in Figures 8-10,

consisted of the Database Reader, ASTT Interface, Tes t Data

Generator, Process Distributor, Run Scripts, and Error Analysis.

The separation of the directory structure was one of the major

changes from the phase one release of ASTT. The difference was that

the phase one release of ASTT kept all the files necessary in the test

directory. These files consisted of various packaging schemes, partial

sequence files recourse files, and completed test cases. The phase

two release in conjunction with the current files required additional

39

files. These f i les were necessary to incorporate the addit ional

capabilities specified in the high level requirements. Therefore, the

files necessary to configure the ASTT such as resource files and

partial sequence files were separated and placed in a directory b y

themselves labeled “-/astt/”, (see Figure 7). Everyone had read

access to this directory structure, however , wr i te access was

restricted only to the System Test Engineer.

data/
subsystem/ partial sequence files

FIGURE 7: PHASE TWO ASTT DATA DIRECTORY STRUCTURE

Similarly, the Database Reader was accessible only by

System Test Engineer and was modified to write the command

and partial sequence files in the “DATA” directory structure

t h e

able

(see

Figure 8). The partial sequence fi les were stored in a “data”

directory structure instead of the phase one’s test directory structure

(see Figure 7),

40

Read
Command Database
Database Reader Generate Command

File

Generate
Partial Test Cases

FIGURE 8: PHASE TWO ASTT DATA FLOW DIAGRAM(DATABASE READER’ S
OPERATION)

The ASTT Interface was developed to read

t h e pre-specified “DATA” directory

information to the user via the GUI

the command table generated by the

structure

(see Figure

resource files

and displayed

9). The ASTT

from

t h e

r e a d

Database Reader, packaging

Data Directory

Read
Resource

File
‘nv%men=Env~~%!nent

1/ \

File

\
ASIT call to P Process

Interface distribute Distributor
a test run

FIGURE 9: PHASE TWO ASTT DATA FLOW DIAGRAM(ASTT’S OPERATION)

41

.

*

scheme table, and workstation host names. After the user made the

desired selections, the ASTT generated an environment file when the

user pressed the “SAVE_ENV” button and executed the Process

Distributor when the “RUN” button was pressed by the user.

The Process Distributor read the environment file generated b y

the ASTT Interface, and executed the following scripts (see Figure

lo):

● Test Data Generator.

● Run Script (multiple times via forko function calls).

● Error Analysis.

Process
Distributor

call to
generate

test cases

-
Test Data Run Error
Generator Scripts Analysis

FIGURE 10: PHASE TWO ASTT DATA FLOW DIAGRAM (~OCESS
DISTRIBUTOR ’S OPERATION)

42

The call to Data Generator generated a complete test file for

each test case specified in the ASTT’S environment file. Then the

Process Distributor executed every test case. The execution of each

test case was done by copying each test case to one of the selected

host’s temporary directory, creating new processes, calling the Run

Script from each child process to execute that test case through the

selected MSS program(s), and copying the result back into the test

directory. After all the test cases specified in the ASTT’S

environment fi le have been processed, the Error Analysis was

executed.

Test data generator read the environment file generated by the

ASTT Interface and created a new test directory or overwrote a n

existing test directory and created the specified complete test files.

The data for generating these complete test files was resident in the

“DATA” resources directory. The partial sequence files were picked

from the “data” directory and the packaging schemes were picked u p

from the resource directory of “astt” (see Figure 7).

The Run Script executed a test case through the selected MSS

program(s).

43

.

..

The Error Analysis script read the environment file generated

by the ASTT Interface and scanned the log files of specified test case

for errors. After encountering an error, the script compared the

detected error message to the set of error messages that were

expected for the “good error” cases. If the detected

matched, the test case directory w a s m o v e d t o “good

directory. Otherwise, the test case directory was moved

message

errors”

to “bad

errors” directory. All the cases without any errors remained in the

test directory.

4 . 3 . 6 . PHASE TWO: EVALUATION

The test team received the fourth version of the MSS programs

for System Testing in March 1997. This system could now process

about one thousand two hundred of the planned one thousand six

hundred commands. During this period, the test team used the

ASTT’s second release to test the MSS programs. Evaluation phase of

the second build was completed during System Testing. The test

team also received a sixteen gigabyte hard drive to resolve the data

storage problem encountered in the previous build.

44

Phase two version of ASTT was much more visual and flexible

than the phase one version. This version of ASTT was more visual

due to the GUI. This version of ASTT was flexible because it allowed

the user to generate as few as one test case and up to four thousand

eight hundred test cases. Additionally, the ASTT could now

distribute multiple test runs and each test run could be distributed

to multiple workstations. By using a test run, data generated is more

manageable than the previous version of ASTT. This is due to the

ability to select subsets of test cases verses all test cases in phase

one.

The most significant improvement for phase two of ASTT was

the reduction in amount of time to execute the test cases. Although a

test run could be designed with a small number of test cases, for

benchmarking purposes the same number of test cases as in phase

one was used. This test run utilized ten, one hundred MIPS HP 735

workstations, with all the MSS applications selected. The execution

time was about seventeen h o u r s o f n o n - s t o p processing.

Theoretically, using ten of the same workstations should execute

three thousand eight hundred test cases in a one-tenth of the time.

But, due to copying and moving files from one workstation to another

45

the execution of these three thousand eight hundred test cases was

completed in one-seventh of the time. Currently there are ten, one

hundred MIPS HP 735 and twenty, fifty MIPS HP 725 workstations

available to the test team.

The Error Analysis script was improved to distinguish the

“good errors” from the “bad errors”. After detecting the errors, the

script moved the erred test cases in the corresponding “good errors”

and “bad errors” directories. In this phase, the user only viewed the

“bad errors” directory and skipped the “good errors” directory. If the

“bad errors” directory was empty, then the user skipped t h a t

subsystem altogether. In the first build of the ASTT, the manual

process of examining error cases took approximately eight work

days. This time was reduced to four work days in the second build

of ASTT.

Including the two capabilities mentioned above to the ASTT, it

took a maximum of five work days to verify the database files of

each MSS program (one work day for test run and the remaining

days for error analysis), down from fifteen work days (six work

days for test run and the remaining days for error analysis).

46

.

●
✎

4 . 3 . 7 . PHASE THREE: HIGH LEVEL REQUIREMENTS

The high level requirements for the next development phase

are:

● Updating the Database Reader to ex t rac t addi t iona l

information from the central ized database s u c h a s

command packaging information.

● Adding a capability to the ASTT Interface to read the

previously generated environment file in order to modify

the test run, or execute the original test run in multiple

occasions.

● Adding a GUI to the Process Distributor to indicate the

work load and the capability to suspend or stop a test

run.

4 . 3 . 8 . PHASE THREE: DEVELOPMENT

From April 1997 to May 1997 the Planning, Design, and

Implementation phases of the third build will be completed. The

programs tha t wi l l be enhanced dur ing th i s per iod will be the

47

Database Reader, ASTT Interface, Test Data Generator, and Process

Distributor.

The development of the third build of ASTT will start in the

first week of April 1997.

4 . 3 . 9 . PHASE THREE: EVALUATION

The test team is scheduled to receive the fifth version of MSS

programs for System Testing in May 1997. This system should

process most of the planned one thousand six hundred commands.

During this period the test team will use the ASTT’S third phase to

test the MSS programs.

Evaluation phase of the third build will be completed during

System Testing.

48

●

“.

5 . CONCLUSION

Software testing is a very important issue in software

development. This is due to the cost of correcting errors before

releasing the software verses post [4]. Unit Testing and system

requirements testing are the critical testing levels in most software

developments [3].

In the case of the CASSINI project, the testing and verification

of the content of each MSS program’s database f i les is a t ime

consuming and tedious effort, due to the number of test cases

necessary to perform a thorough testing and repetitious s teps

involved in generating a test case. In order to send an acceptable

command to the spacecraft, the MSS needs to verify each program’s

database files against the CMI_DB file. This is necessary to ensure

the commands are translated correctly and sent to the spacecraft

with the acceptable values. If the command’s name or one of its

argument values is incorrect, it could jeopardize the entire mission.

Prior to the introduction of ASTT, the only method the test

team had available was to hand build test cases utilizing all the

commands with all the possible argument values thorough ever y

program. In the beginning this was not a problem since the MSS

49

9

“.

could only process approximately three hundred commands. I n

order to generate test cases for the MSS that could process one

thousand two hundred commands, it would take an estimated effort

of twelve engineering work weeks to complete the task. However,

the task of generating such test cases was humanly impossible, due

to requiring a test engineer to repeat continuous key strokes and

mouse movements to generate a test case. The magnitude of test

cases required to verify each MSS program’s database files could

result in physical injuries such as Carpel Tunnel Syndrome. Even if

the test team was required to perform this magnitude of testing,

they would not have had enough scheduled t ime or funds to

accomplish this task. The test team usually has a total of six work

weeks to complete all System Testing with two test engineers.

The first release of ASTT reduced the effort of CMD_DB

verification by a total of approximately ten engineering work weeks

and reduced liability of physical injuries by reducing number of

repetitious steps involved in generating a test case. After the second

release of ASTT, the effort of CMD_DB verification was reduced much

further.

50

●

The second release of ASTT allowed one test engineer to

complete the CMD_DB verification in about five engineering work

days; one day to run ASTT and the remaining time to evaluate the

error cases. This was the worse case scenario after the second

release of ASTT. The optimum case was two engineering work d a ys

to complete the CMI_DB verification compared to two engineering

work weeks for the first release of ASTT or estimated twelve work

weeks when ASTT was not available. With the second release the

liability of physical injury was r e d u c e d f u r t h e r b y v i r t u a l l y

eliminating repetitious steps altogether.

The improvements that al lowed the MSS test engineers to

accomplish such an extensive testing of the MSS software were the

following ideas:

● Automating the test case generation process.

● Automating the execution of the test cases through MSS’S

programs.

● Automating most of the error analysis.

51

To reduce the execution time of the test cases the following

technologies were used:

● Ability to easily create multiple test runs.

● Distributing the test case processing t o m u l t i p l e

workstation for parallel execution.

These improvements allowed MSS to reduce cost, reduce

liability of physical injury, insure quality, and allow enough time to

perform other testing. The use of ASTT either directly or indirectly

ensured the soundness of MSS’s programs.

52

6.4. PROGRAMMING REFERENCES

[9] D . Heller, P. Ferguson. “The Definitive Guides to the X
Windowing System.” O’Reilly & Associates, 1994. Volume 6A.

[10] P. Ferguson. “The Definitive Guides to the X Windowing
System.” O’Reilly & Associates, 1994. Volume 6B.

[11] E. Cutler, D. Gilly, T. O’Reilly. “The X Windowing System in a
Nutshell.” O’Reilly & Associates, 1992, Second Edition.

[12] J. Peek, T. O’Reilly, M. Loukides. “UNIX Power Tools.” O’Reilly &
Associates, 1993
[13] A. Silberschatz, P. Galvin. “ O p e r a t i n g S y s t e m C o n c e p t s . ”
Addison-Wesley, New York, 1994. Fourth Edition,

[14] M. Sobell, “A Practical Guide to the UNIX System.” Addison-
Wesley, New York, 1995. Third Edition.

[15] B. Blinn. “Portable Shell Programming.” Prentice-Hall, New
Jersey, 1996.

[16] I. Pohl. “Object-Oriented Programming Using C++.” The
Benjamin/Cummings, California. 1993.

[17] D. Smith. “Concepts of Object-Oriented Programming.” McGraw-
Hill, New York, 1991.

[18] S. Teale. “C++ IOStreams Handbook.” Addison-Wesley, New York,
1993.

[19] B. Stroustrup. “The C++ Programming Language.” Addison-
Wesley, New York, 1994. Second Edition.

[20] S. Liooman. “C++ Primer.” Addison-Wesley, New York, 1995.
Second Edition.

[21] H. Schildt. “C++ The Complete Reference” McGraw-Hill, New
York, 1995. Second Edition.

54

.

[22] B. Kernighan, D. Ritchie. “The C Programming Language.”
Prentice-Hall, New Jersey, 1988. Second Edition.

[23] J. Kay, B. Kummerfeld. “C Programming in a UNIX Environment”
Addison-Wesley, New York, 1989.

55

8

7 . ACKNOWLEDGMENTS

Portions of the work described were performed at the Jet

Propulsion Laboratory, California Inst i tute of Technology under

contract with National Aeronautics and Space Administration.

I would like to thank my loving wife Roubina for her support

and patience throughout the duration of my project. Without her

love and understanding during my schooling, I would have never

completed my masters degree. I will be forever in her grace.

To my thesis advisor, Shari Barkataki, I give my thanks and

gratitude. His guidance and mot iva t ion he lped throughout the

development of my thesis topic and during my masters course work.

Many thanks and appreciation to Steven Stepanek for his

knowledge and assistance in scripting, object-oriented design a n d

programming. Without his support, my thesis would not have been

possible.

A special acknowledgment goes to Suzanne Dodd, Uplink

Operations Element Manager at JPL. Without her approval and the

funding of the project, none of this would have been possible. She

allowed me to use the development steps and the results of this

project for my graduate project.

56

Acknowledgment to my co-workers for contributing knowledge

and ideas for developing this tool. A special thank you to William J.

Krueger for his ideas towards the development of ASTT. To Jaymie

Truschel for her suggestions in writing and organizing the project

information. T o H a n r y Hartounian for his support as a fel low

student, co-worker, and a friend. To my mentor, Annette Larson, for

her support and guidelines for this project. To my former technical

supervisor, Scott Lever, I give my thanks for believing that my

project would be a success, beneficial to CASSINI project , and

supporting me during development. Thanks to Kathy Weld and

Marie Deutsch for giving me the opportunity to work on the CASSINI

project, A special thanks to Cheryl Johnson for having the faith and

giving me the opportunity to work at JPL. Her faith and support

reinforced my motivation to not only continue my education but to

realize my true potential academically and professionally.

Lastly, my love and respect to my parents Flora and Eric. Their

continuous reiteration of the importance of education and the i r

allowing me to find my true career path has been the key to m y

success. The support they have provided me has been priceless.

57

8

..

GLOSSARY

Certifying Flight Hardware:

Every peace of the spacecraft from the building

material to the electronic components must pass a

regression testing process against radiation, heat

and other environmental elements absent on earth

due to the atmosphere.

Command Database file (CMD_DB):

The file that contains all the spacecraft commands

with all the possible argument values of every

command.

Command Stem:

Spacecraft command names e.g. “1s” is a command

stem.

Command table file:

The command table file is a subset of CMD_DB file

that contains information about the command stems

and the corresponding arguments.

58

Flight Rules:

Set of rules to follow in order to NOT harm the

spacecraft. These rules are expressed as algorithms

read by software to check if the set of commands

will generate a conflicting result for the state of the

spacecraft

Inter-Linked:

Input file for one program is generated by another

program. In other words, in order to prepare the

input files and execute program number two,

program number one must be executed first.

Partial Sequence File:

It is a sequence file without the file header

information.

Software Adaptation Process:

Tailoring the MGSO software to a project’s

requirements and specification.

Software chain:

Sequential run of Inter-linked programs.

59

-)

.

.

L

Sequence File:

Similar to bourne shell script file that contains

several related commands in sequential order to

perform a task.

60

ACRONYM LIST

ASTT

~_DB

DSN

GUI

IDAP

JPL

MGSO

MSS

PAP

SIE

Automated Software Test Tool.

Command database.

Deep Space Network.

Graphical User Interface.

Immediate/Delayed Action Program

Jet Propulsion Laboratory.

Multi-mission Ground system Office.

Mission Sequence System.

Privileged Action Program

Sequence Integration Engineer.

Uplink Element.

61

*

nz
w

m

● ☞

sa
o

m
a

● ☞m
a)

m
in

A4
$+
o
$

G

o
C6
&

W3

Organization Overview

L1

D

#

c1

c1

Q

c1

National Aeronautics and Space Administration (NASA).

Jet Propulsion Laboratory (JPL).

Multi-mission Ground System Office (MGSO).

Uplink Operations Element (ULO).

Mission Sequence System (MSS).

Deep Space Network (DSN).

Centralized Command Database File (CMD_DB).

3

d-

0
V2

0

I

,/Tl
1

●

H

rJ

Introduction (cont.)

Q SC sequence development

Q Uplink process.

/ “

m!!!w=J ;,. . .::. :,.. .:::::.0$$D S N ii$j;;.: ;:::.

D
USER

f 1

&.

R!?/:.:::::..
~

. .-...:. O
.:.

ii

.

II

Introduction (cont.)

D SC Operating System is divided into two major parts:

>> &Ound System Software

>> Flight Software

Q For Example:

>> UNIX command “1s -al dir”

D SC components must be “Flight Qualified”

>> Pass a regression testing process against radiation, heat and other

environmental elements absent on earth.

‘1

Introduction (cont.)

a Example of SC sequence file:
>> UNIX commands (SC commands)

>> UNIX shell

cp / dirl/dir2/ prog.tar.Z -user_account/.

uncompress prog.tar.Z

tar xvf prog.tar

rm prog.tar

script file (SC sequence file)

#! /bin/sh

cp /dir l/dir2/ prog.tar.Z -user_account/.

uncompress prog.tar.z

tar xvf prog.tar

rm prog.tar

8

Introduction (cont.)

~ Each MSS program:
>> Performs one step of the translation process.

>> Needs subset of the (CMD_DB).

>> Accesses many different resource files.

D Testing these files are labor intensive work.

a Automated Software Test Tool (ASTT) was developed to

simplify this process.

9

U2

CJ

o

What is Software Testing?

Q “Software testing is a process of executing a program or system
with the intent of finding errors.”

~ Levels of software testing:
>> Unit Testing:

– white BOX Testing: Testing the internal control structure of a given module.

– Black BOX Testing: Testing the functional requirements w/o regards to internal code.

>> Integration Testing:
— Testing the interfaces when several modules are brought together.

>> System Testing:
— Testing the entire system when all the modules are integrated.

>> Acceptance Testing:

– The end user tests the system (sanity check).

11

Automated Software Test Tool (ASTT)

a Why ASTT is needed?
>> CASSINI project will have -1600 commands.

— Each command has O to 32 arguments.
— Each argument has 2 to 200 values.

>> For example:

– Command XYZ has 3 arguments:

> Argl has 4 values.

> Arg2 has 3 values.

> Arg3 has 2 values.

- A test case for this command will have 4X3X2=24 instances command XYZ.

12

ASTT (cont.)

Q Tasks performed by ASTT:
>> Generate the test files.

>> Execute test fks in parallel on multiple workstations.

>> Analyze the result of the test cases.

13

ASTT (cont.)

Q ASTT Interface.

14

ASTT (cont.)

D Components of ASTT:

Read
Cornxnand
Database 9

File

R e a d Cornrn“2 \Read P a r t i a l
Table File -rest cases

I Interface I r ‘~=st:D a t ax/call to Generator
~eneratecall to

distribute test cases
a test run

Cun II Process call to run
D i s t r i b u t o r each te=* ~-=- - r - - - - - ,s c-?-l nt-

~“------ ‘
—-.-~— I

call to
anal yze E r r o r
exrors A n a l y s i s 15

ASTT (cont.)

a Components of ASTT (cont.) :

>> Database Reader.

— Generates partial test files.

— Generates command table file.

>> ASTT Interface.

— The user interfaces with this GUI interface in order to create test runs.

~> Process Distributor.

— Distributes test cases to multiple workstations and calls the Run Script.

16

ASTT (cont.)

CI Components of ASTT (cont.):
>> Test Data Generator.

– Generates complete test cases from the partial test cases by adding the

appropriate file header.

~> Run Script.

– executes the MSS programs with a given test case

>> Error Analysis.

– Analyzes the result of the test cases.

II
II

ii
II

II

I

ASTT (cont.)

~ ASTT sample run.
—— . chiZd process

“’= w

Problem Discovery

CI 7/95: 1st version of MSS software was capable of processing

165 out of planned 1600 commands.

>> The system test team realized verifying the command database file of each

MSS’s programs would be very time consuming.

Q From 8/95 to 3/96 efforts put forth to investigate the possibility

of automating the test file generation.

>> Spacecraft commanding possibilities. (e.g.24 for command XYZ)

>> Processing of command names and their argument values.

>> Generation of test files.

>> Directory structure for storing test cases.

19

Problem Analysis

Q 3/96: 2nd version of MSS software was capable of processing
400 out of planned 1600 commands.

>> The test team_ tried to incorporate the idea of commanding possibilities into

generating test cases.

— These test cases resembled the test cases that ASTT was expected to generate.

D Analysis Outcome.
>> Good results were produced from these test cases.

— Good result: detected anomalies that previous level of testing did not discover.

>> The MSS test team placed a proposal for funding to develop ASTT.

>> Eugean Hacopians was assigned the task of developing ASTT.

20

Development of ASTT (cont.)

D Prior to ASTT:
>>

>>

>>

>>

Test cases were generated manually.

This was not a problem at the beginning with 400 commands.

Generating test cases for 1200 commands would take an estimated effort of ~
engineering work weeks.

This task was not humanly possible due to:

– Number of key strokes.

– Number of mouse movements.

– Eye and wrist strain.

21

IIII

Development Process

D Due to the nature of ASTT and possibility of additional

requirements, the Evolutionary Software Development Process

was chosen.

D This development process allows:
b

>> The software requirements to be’=~parated into related groups.

>> The software is developed one build at a time.

>> Every build is delivered to the customer for evaluation.

>> Upon user evaluation, the customer to provide feedback.

22

I

II Development of ASTT: Phase One

D High Level Requirements:
>> Read command information from the CMD_DB file.

>> Generate sequence files.

>> Automate the execution of all test cases.

Q Development:
>> Programs / scripts developed:

>

>

>

>

Database Reader.

Test Data Generator.

Run Scripts.

Error Analysis.

a Evaluation:
>> 11/96: 3ed version of MSS software was capable of processing 1000 out of

planned 1600 commands. 23

~ Result of Phase One

Q First Release of ASTT.

>>

>>

>>

>>

ASTT generating -3800 test cases.

The processing of these test cases through the MSS software took:

—

—

—

6 days of non-stop processing on a 100MIPS HP workstation.—

One eng. workweek to analyze the data generated.

Generated 9 gigabyte of data.

Reduced effort by approximately ~ eng. work week.

Reduced the liability of physical injury.

24

Development of ASTT: Phase Two

a High Level Requirements:

>>

>>

>>

>>

Distribute the execution of test cases over multiple workstations.

Introduce a GUI for ease of selecting commands, workstation names for

process distribution.

Modify the test case generation process.

Modify the Error Analysis script to distinguish between “good errors” and

“bad errors”.

D Development:

>> Programs / scripts developed:

> ASTT Interface.

> Process Distributor.
25

Development of ASTT: Phase Two

D Development (cont.):
>> Programs / scripts modified:

> Database Reader. > Run Scripts.

> Test Data Generator. > Error AnaIysis.

Q Evaluation:
>> s/gT: 4th version of MSS was capable of processing 1200 out of planned

1600 commands.

>> The ASTT was:

>

>

>

>

More visual due to the GUI.

More flexible by allowing the user to generate as few as one test case up to 4800 test
cases.

Able to generate multiple test runs.

Able to distribute test cases in each test run to multiple workstations.

I c1

,. .

Development of ASTT: Phase Three

a High Level Requirements:
>>

>>

>>

Update the Database Reader to extract additional information from the

CMD DB file.—

Add the capability to the ASTT interface to read a previously generated test

run file in order to modify and re-execute the test run.

Add a GUI to the process distributor to indicate the workload and the

capability to suspend or stop a test run.

D Development:
)> Programs / scripts modified:

> ASTT Interface.. >

> Process Distributor..
)) This phase is currently under development:

Database Reader.

Test Data Generator.

28

. .
II

Conclusion

To send an acceptable command to the SC, the
verify each programs database files against the

>> This task is a time consuming and tedious effort.

MSS needs to
CMD DB file.—

— Due to number of test cases necessary to perform a thorough testing.
— Due to repetitious steps involved in generating a test case.

Q ASTT allowed MSS test engineers
software by:

—

—

—

—

—

Automating the test case generation.

Automating the execution of test cases

Distributing the test case processing to
execution.

Automating most of the error analysis.

to extensively test the MSS

Ability to easily create multiple test runs.

through MSS programs.

multiple workstations for parallel

29

. .

Conclusion (cont.)

D Testing Effort.

ml
Phase Two (worse case) H

30

